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an uncorrected level should be regarded with caution when
interpreting the results due to the increased likelihood of producing
a Type I error (Poldrack et al., 2008).

The major differences between the feedback and observation
versions of our task were outlined the Materials and methods section.
Despite their differences, however, the two learning sessions share
the common goal of learning the value of probabilistic cues. Thus,
participants may engage in a variety of cognitive strategies in order to
facilitate successful performance. As learning progresses over time in
the feedback session, for instance, it is possible that participants
employ a more declarative based cued recall strategy during the cue
phase. Participants may also use verbal rehearsal strategies during the
learning phase, irrespective of the task version. Research examining
how participants solve another probabilistic learning task, the
Weather Prediction Task (WPT), may shed some insight into possible
declarative and nondeclarative components of category learning tasks
as well as the knowledge that participants may have during these



differences were also apparent. First, only regions within the basal
ganglia weremodified by amain effect of learning type, while no voxels
were identified in the MTL showing such differentiation. Several
neuroimaging papers have shown that feedback and reward processing
recruit ventromedial regions of the striatum (for review see Delgado,
2007), thus, it is not surprising that this region was recruited more
strongly during the feedback learning trials. It may have been expected
that theMTLwould be selectivelymodulated by the observation version
given previous results (Poldrack et al., 2001); however we did not
observe this.While a null result in neuroimaging is not indicative of any
particular finding per se and the context and details of our paradigm
differ fromprevious probabilistic learning studies, it is possible thatMTL
BOLD signals within our paradigm are recruited during both feedback
and observation learning–as suggested by the main effect of difficulty
analysis–to contribute to overall learning. A second difference which
emerged between the hippocampus and caudate nucleus was that the
hippocampus showed amain effect of time (early×late learning)during
the learning session, whereas caudate nucleus responses were not
significant. This effect was driven primarily by activity during feedback
learning (primarily for the hard cues), which was greater during late
compared to early stages of learning in the hippocampus. This result
may suggest that the involvement of the hippocampus in feedback
learning happens later on during the learning process.

One finding to note is that the active voxels comprising regions of
interest within the BG varied according to the type of analysis. It is
perhaps not surprising, given the multifunctionality and connectivity of
the striatum (Middleton and Strick, 2000a,b; Pennartz et al., 2009) that
different voxels would be sensitive to the type of learning or level of
difficulty. In the current experiment, dorsomedial regions of the striatum
(caudate nucleus) were involved in initial learning and testing, whereas
the dorsolateral regions (putamen) were involved in subsequent
analyses with activity during learning positively correlating with
prediction error signals. A functional connectivity analysis also revealed
correlationsbetweenboth caudatenucleus andputamen regions and the
hippocampus. Interestingly, a ventromedial striatum region was found
to be more responsive to feedback compared to observation learning,
suggesting that some striatal subcomponents may distinguish between
learning type (Poldrack et al., 2001) as supported by neuropsychological
studies (Shohamy et al., 2004). In our design, however, this analysis is
affected by the presence of affective feedback known to engage regions
of the ventromedial striatum (for review see Delgado, 2007). Yet, this
result is in accordancewithpreviousprobabilistic learning studieswhich
report engagement of posterior parts of the caudate nucleus and
putamenduring learning, andmore anterior parts of the caudate nucleus
and ventral striatum linked with feedback processing (Cincotta and
Seger, 2007; Seger and Cincotta, 2006).

In contrast to the striatum results, activity in the hippocampus was
fairly consistent across analyses. There has also been recent research
parsing out the distinct functional role of the subregions of the
hippocampus. However, these studies have focused more on other
issues such as anatomical distinctions between regions involved in
memory encoding versus retrieval as well as pattern completion
versus pattern separation (Bakker et al., 2008; Eldridge et al., 2005;
Greicius et al., 2003). Future studies using high resolution fMRI may
investigate how distinct subregions of MTL and BG interact during
learning, to contribute to decision making processes underlying goal
directed behaviors. To conclude, an investigation of the interactions
between the MTL and BG during probabilistic learning suggests that
these distinct memory regions may interact in a parallel manner to
facilitate goal directed learning, acting synergistically during predic-
tion error like learning scenarios.
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